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Appendix S.1: Proofs in Section 5

S.1.1. Proof of Proposition 1

We prove our claim by considering two cases: i)p; <@; and ii) p; > @;.

i) pi <@;: In this case, for any D; <1, we have that waiting times are zero, so that Uif(rhyi,thDi) >
Tin, > u. Thus, we should have that D$° =1.

ii) p; > @;: In this case, we have that Uif (ri,yi5,t5,D;) > Tiy, 2 U for any D; <@;/p;, similar to part i. On the
other hand, for any D; > @;/p;, we have that waiting times are infinity, so that Uif (ri,yi,t5, D;) = —o0 < u,
since p; > @;. Hence, we should have that D¢ =a;/p;.

Agent utilizations: When Dj® = 1, we have that of°(r;,yi,ti) = af (ri, t; 0yi/ay, pi/a;). Moreover,
piD§¢ =@ when Di® <1, so that o{¢(r;,y;,t;) =1 for all £€ {1,...,N;}. We obtain the function presented
in the proposition when we combine these two observations.

S.1.2. Proof of Theorem 1

In this proof, we, first, focus on symmetric Market Fquilibrium, where the same type of agents (high-value
or low-value) charge the same price. We let (py,pr;am,ar) be a symmetric Market Equilibrium under the
special market structure. We will provide a discussion on non- symmetric Market Equilibrium at the end of
the proof. As a first step towards characterizing the symmetric equilibrium, we derive the revenue of agents

when all the agents in the same pool charge the same price as follows:

COROLLARY 2. Let V& (pu,pr) and VE¢(pu,pr) be the revenue of a high-value and a low-value agent,
respectively, when all the high-value agents charge py and all low-value agents charge pp. If Ry — py #

Ry —pr, then we have that
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Since (pg,pr;am,ayr) is an equilibrium, there exists a sequence of (¢*,6%)-ME, say (p%,p%;am,ar), such
that (pa,pr) = limg_ oo (P4, p% ) where limy_, . (€, 6%) = (0,0). We let V™ (k) and V™ (k) be the revenue of
a high-value and a low-value agent, respectively, according to (p%,p%;ap,ar). Then, we have that V™ =
limg_, oo V™ (k) for all i € {D, F'}.

1  We show that V7" = V7™ =0 by contradiction. Thus, we suppose that either V5™ >0 or V7™ >0 is
true on the contrary and find a contradiction for any possible price pair (pg,pr) satisfying either of these
conditions. To this end, we follow a case-by-case analysis:

i. (Rg —pua =Ry — p1): Notice that all agents are pooled together in this case and the equilibrium
revenue of the high-value agents is 7,p% (ps/(ax + ar)) by Proposition 1. We also should have that pg >0

1
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to make sure V5™ > 0. Then, consider a small fraction (less than 6*) of high-value agents deviate and cut
their prices by an arbitrarily small ¢ > 0. The revenue of deviating agents will be 7,(p¥ — () for large k by
Proposition 1. This deviation improves the revenue of deviating agents because p, < ay + ar, so that any
(pm,pr) satisfying Ry —prr = Rp, — pr cannot emerge as an equilibrium price pair.

ii. (RL —pr >Ry —pu): In this case, we have two sub-cases: a) (ps <ag): By Corollary 2, we
have that limy_, ., V5™ (k) =0 since p, < ar. We also should have that py, >0 to make sure V7™ > 0. Then,
consider a small fraction of high-value agents deviate and charge p’ with 0 < p’ < pr. The revenue of deviating
agents will be p’ for large k by Proposition 1. As this deviation improves the revenue of the deviating agents,
any (pg,pr) in this sub-case cannot emerge as an equilibrium price pair. b) (ps > ar,): By Corollary 2, we
have that kll)ngo Vi (k) = 7.p% (ps — ar)/am. Then, as in Part 1.i, a small group of high-value agents can
improve their revenues by cutting their price. Therefore, any (pg,pr) in this sub-case cannot emerge as an
equilibrium price pair.

iii. (R —pu>Ri—pr): By Corollary 2, we have that limy_, ., V5" (k) = 7.p% (ps/am) and
limg 00 V7™ (k) = 0. We also should have that py > 0 to make sure V5™ > 0. Then, as in Part 1.i, a small

group of high-value agents can improve their revenues by cutting their price.

2. We suppose that either V™ > 7,(Rg — Rr) or V™ >0 on the contrary and follow a case-by-case
analysis:
i. (Rg—pa <Ry —pr): The proof is the same as in Part 1 because we rely on p, < ay + ar in
Part 1, and it is still the case.
ii. (Rg — pu > Ry — pr): By Corollary 2, we have that limy,_, o, V5™ (k) = 7.p%; and limy,_, o V™ (k) =
0 since p, = ay. We should also have that py > Ry — Ry to make sure that V™ > 7,(Ryg — Rr). Then,
when a small fraction of low-value agents deviate and charge p’ with 0 <p’ < (Rp — Ry + py ), the revenue
of deviating agents will be p’ for large k by Proposition 1. As this deviation improves the revenue of the

deviating agents, any (pg,pr) in this sub-case cannot emerge as an equilibrium price pair.

5. We suppose that either V7™ < Ry or V™ < Ry, on the contrary and follow a case-by-case analysis:

i. (Rg —pua =Ry — p1): Notice that all agents are pooled together in this case and the equilibrium
revenue of the high-value agents is 7,p%) by Proposition 1 since p, > ay + ar. Then, consider a small
fraction (less than 6%) of high-value agents deviate and increase their prices by an arbitrarily small ¢ > 0.
The revenue of deviating agents will be 7,(p% + () for large k by Proposition 1 since p, > ay + ar. This
deviation improves the revenue of the deviating agents, so that any (pg,pr) satisfying Ry —pg = Rr — pr.
cannot emerge as an equilibrium price pair.

ii. (RL—pr>Ru—pu): By Corollary 2, we have that limy,., V5™(k) = 7.p% and
limy, o0 V™ (k) = 7,p% since ps > ap +ay. Then, consider a small fraction (less than §%) of low-value agents
deviate and increase their prices by an arbitrarily small 0 < { < (Rr, —pr.) — (Rg —pg). The revenue of devi-
ating agents will be 7,(p% + () for large k by Proposition 1 since Ry —pr, —( > Ry — py. As this deviation
improves the revenue of the deviating agents, any (pg,pr) in this sub-case cannot emerge as an equilibrium

price pair.
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ii. (Rg —pu >R —p1): Similar to Part 5.ii, high-value agents now can improve their revenues
by increasing their prices.

The proofs for parts 3, and 4 are similar to the above ones, and thus omitted.

Non-symmetric Market Equilibrium: We do not rule out the existence of a non-symmetric equilibrium
outcome, where the same type of agents (high-value or low-value) charge different prices. However, we show
that the possibility of non-symmetric equilibrium can be ignored using the results of Proposition 3 as we
focus on agent revenues. The following proposition proves that the same type of agents serving the same

customer class in any non-symmetric Market Equilibrium must earn zero revenue.

PROPOSITION 3. Let Vg™ and V™ be the equilibrium revenue of a high-value and a low-value agents in
sub-pool n in the simplified marketplace model, respectively. Then, we have that Vg™ =0 (V™ =0) for all
ne{l,...,N} if N, the number of different prices announced by the high-value (low-value) agents is two or

more.

The above proposition directly implies that any non-symmetric equilibrium does not affect our results for
the revenue of high-value agents in parts 1 and 2 and for the revenue of low-value agents in parts 1-4 because
we do not exclude the possibility of zero revenue in these cases. In the remaining cases, we can show that
there is not any non-symmetric equilibrium as follows: Suppose there is a non-symmetric equilibrium, where
high-value agents charge different prices, when ps > ay and Ry > Ry. By Proposition 3, we should have
that all of the high-value agents earn zero in the equilibrium. However, a small group of high-value agents
can guarantee a strictly positive revenue by charging p’ = (Ry — R1.)/2 since ps > ay. Similarly, we can rule

out any non-symmetric equilibrium where low-value agents charge different prices if ps > ay + ap.

S.1.3. Proof of Proposition 3

In this proof, we focus only on the high-value agents. The proof for the low-value agents is the same, and
thus omitted.

Let (r,y) = (rn,yn)Y_, be a Market Equilibrium where y,, is the the fraction of agents offering the net
reward r, and N is the number of different net rewards announced by the agents. Since (r;,y;) is an
Market Equilibrium, there exists a sequence (r;*,y;*) such that (r;*,y;*) is a (e, 6%)-ME where kll}ngo ef =0,
leH;O 0 =0,r;= klijgo r;*®, and y; = leH;O yi®. Note that we omit the t vector, which represents the flexible
agents decisions about how much capacity they allocate to each class, because we study the simplified
marketplace model after the agents make their service decisions.

Let Ny = {n €{1,...,N}:3 high-skiled agents in sub-pool n, }, n= nrgjl\%{ n,and m=min{n € {1,...,N}:
rn < 7Tp}. Note that we should have |[Ny| > 2. Otherwise, our claim would hold trivially since we would have
that all high-value agents are in the same sub-pool.

We prove our claim by contradiction. Therefore, we suppose Vg™ > 0 for some 7 € Ny and find a contra-
diction for ps > > "y, and ps <> Yn.

When p, > >"%_ y,, consider a deviation from (r*,y*) where § < 6* fraction of high-value agents from

sub-pool n increase their prices by ¢ = (r, — r7)/2 > 0, which must lead to a price in the finite price set for
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large k as klgrolo €® = 0. Then, by Proposition 1, the revenue of deviating agents is Ry — 7"2 + ¢ for large k
since we have that ps > > "_, y,,. However, this is a contradiction because deviating agents increase their
revenues for large k as kll)n;o €® =0 because their revenues before deviation can be at most Ry — 7"2 .

When ps <>°*_| y,, we should have that Vg™ =0 for all n € {m,...,N}, and thus we should have that
Vi >0, which implies that Ry —r, >0 and p, > Zﬁ;i Yn +y* for some y2 > 0 according to Proposition
1. Consider a deviation from (r*,y*) where § < y® fraction of high-value agents from sub-pool n, for some
n € Ny with n >, charge a strictly positive price p’ = (Ry — r,)/2, which must be in the finite price set for
large k as kli»ngo €® = 0. Then, by Proposition 1, the revenue of deviating agents is p’ for large k since we have
that ps > Zﬁ;i Yn + ¢ by the choices of § and p’. This is a contradiction because deviating agents increase
their revenues (which were zero) by more than €* for large k.

Once we show contradictions for ps > Y > | 4, and ps <Y, 9, we should have that V5™ =0 for all
n € Ny when |[Ny| > 2.

S.1.4. Existence of the equilibrium:

We prove the existence of the equilibrium by constructing one for each of the following three cases:

Case-1 (ps < ap): We show that (p%,p%; am,ar) is a (e¥,8%)-ME where p% = pk =0, and €* and §* goes
to zero as k — oo. To prove this claim by contradiction, we suppose that (p%,p%;ar,ar) is not (€*,6%)-ME
for k > K for some K. Then, at least one group of agents must have a profitable deviation. Suppose, a
y® < 6% fraction of high-value agents improve their revenues by increasing their prices to p’ > 0. However, the
revenue of deviating agents would be zero for large k after such a deviation by Proposition 1 because ps < apy.
Similarly, low-value agents cannot improve their revenues by increasing their prices. Thus, (p%,p%;a,ar)
is a (e*,0%)-ME as k — co.

Case-2 (am < ps <am+ay): In this case, we show that (p%,p%;am,ar) is a (¢*,8%)-ME where p%, =
Ry — Ry — €, p% =0, and €* and 6* goes to zero as k — co. We first want to note that the revenue of the
high-value agents according to (p%,p%;a,ar) is 7595 by Proposition 1 since p, > oy

Similar to the above case, suppose, on the contrary, that y* < 6* fraction of high-value agents improve
their revenues by increasing their prices to p’. Notice that p’ must be greater than Ry — Ry, to be a profitable
deviation. However, the revenue of deviating agents would be at most 7,(Rg — Rr.)(ps — ay)/(ag +ayr) for
large k after such a deviation by Proposition 1 because p’ > p%;. This deviation does not improve the revenues
of the deviating agents because p, < ayg + ar. Similarly, low-value agents cannot improve their revenues by
increasing their prices. Thus, (p%,p%;am,ar) is a (e¥,5%)-ME as k — oo.

Case-3 (ps > am +ay): In this case, we show that (p%,p%;am,ayr) is a (€F,6%)-ME where p§; = Ry — u,
ph = Ry —u, and €® and §* goes to zero as k — oco. By Proposition 1, the revenues of the high-value and
low-value agents are p¥; and p% , respectively. As p¥ and p% are the highest prices that the agents can charge,

there is not any profitable deviations for these prices.
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Appendix S.2: Proofs in Section 6

PROPOSITION 4. Fquilibrium revenues of the flexible agents serving the same class must be the same.

Furthermore, letting V/5¢ be equilibrium revenue of a flexible agent serving class i € {A, B}, we have that

S.2.1. Proof of Proposition 2

Using the standard definition of the correlation coefficient, for any given shape parameter n, we have that

nn+3)Bn+1)(nEn+9)+4)
4+ 1)2nn+1)(nn+3)+4) +1)

As 1 — oo, we have that Corr(Sa, Sg) — 0 because the denominator is a higher degree polynomial than the

Corr(Sa,Sg) =

4x4x(134+4) -1

numerator is. On the other hand, as 7 — 1, we have that Corr(S4,Sg) — TXAx(@x8T D)

Finally, we prove our claim on the independence as follows:

sA min{sy",s5} n+1 sA sB
lim P(Sa<sa,Sg<sp)= lim dsA/ dsB:/ dsA/ 1
0 0 0

n—roo n—reo min{sl,sB} n— 1

1/n 1/n
sA s, 1 sB SB 1
= s28p = lim / dsA/ nt dsp / dsB/ nt dsa
n—0o0 0 sl 77_1 0 s% 77_1

= lim P(SASSA)P(SBSSB)

n— 00

S.2.2. Proof of Proposition 4

We first focus on our claim about the equilibrium revenues of flexible agents serving the same class. Note that
our claim holds trivially if all of flexible agents serving class ¢ € { A, B} charge the same price. Furthermore,
Proposition 3 shows that all flexible agents serving class i should earn zero revenue in the equilibrium if they
charge two or more prices. Thus, the equilibrium revenues of the flexible agents serving the same class must
be the same.

We, next, show that flexible agents earn the same equilibrium revenue even if they serve different classes.
We prove our claim by contradiction. Thus, we suppose Vi # VZi. When Vi > VZi€ > 0, there must
be only one sub-pool, say 7, with flexible agents serving class A by Part 1. We should also have that
pa > 22:1 ya, +y~ for some y® > 0 by Proposition 1. Consider a deviation where a y* < §* fraction of
flexible agents serving class B charge p’ = (Vi€ + V) /(274) and exclusively serve class A (Note that p’
must be in the finite price set for large k as khj& ¢* =0). By Proposition 1, the revenue of deviating agents
should be 73p’ for large k since p4 > p2 + leI{)lQ y* as a result of the choices of § and p’. This is a contradiction

€

because deviating agents increase their revenues for large k. Similarly, when VZis > V3¢ > 0, a small group

me

of flexible agents serving class A can improve their revenues. Hence, we should have that Vs = V<.
S.2.3. Proof of Theorem 2

Let 4 be the portion of service capacity that the flexible agents allocate to class A. We prove our claim
assuming that 74 > 7g. the proof for 74 < 75 is very similar.

We first note that v, must be between 1 — pp and pa because otherwise the flexible agents serving one

of the classes would earn zero according to Theorem 1. Furthermore, for any v4 < pa, agents’ revenue from
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class A will be 74E[S,] whereas their revenue from 75E[S,]. If 74 = 75, none of the agents would have
profitable deviation from a strategy where 1 — pg <4 < pa, and thus this would be a Market Equilibrium.
Then, our claim holds because
1 pst/m 1 2
E[S,] = Z%/o /s’; spdsadsp = 7287_';11) /0 (3124/77 - S,an)dSA = —(77 _'EZ;E;;_’_ 1)’

On the other hand, If 74 > 7g, 74 < pa could not be sustained as an equilibrium because agents’ revenue
from class A would be strictly higher. This would create an opportunity for a small group of agents to
improve their revenues by serve class A exclusively. Thus, when 74 > 75, the only equilibrium candidate is
~va = pa. Such an equilibrium can be sustained when flexible agents charge 75E[S,]/T4 to serve class A. To be
specific, consider a sequence of strategy profiles such that (r%,y%,t%) = ((1 —75/74)E[S,], 1, pa + 26%) and
(r, yk %) =(0,1,1 — ps — 26%). In other words, flexible agents charge T5E[S,]/74 and allocate a capacity
that is infinitesimally higher than p 4 to serve class A. They allocate the remaining of their capacity to class
B and charge E[S,)].

The above profile is a (6%-€*)-Market Equilibirum for large k with §* — 0 as k — oo and €* =

T5/TAE[S,] : Agents cannot improve their revenue from class B because it is at the highest possible

_ 25k
pa+25F
level. Agents are not fully utilized while serving class A but this is not enough to cut their prices because
of the choices of €*. Finally, a y’ < 6% fraction of agents cannot try to increase their prices. After a price
increase, their after deviation revenue would be zero according to Proposition 1 since the service capacity

available for class A at the lower price will be strictly above p4.

S.2.4. Proof of Theorem 3

We suppose the firm offers Exam A throughout the proof and suppose 74 > 75 = 1. We first show the h(w,7) =
wl/" 4w — 27w =0, with 7 > 1, has a unique non-trivial solution @ € (0,1). We have that % <0 for
any w < 777% €(0,1) and W > 0 otherwise. Combining this with the facts that W’wzo >0
and W’w:l > 0, we can find two critical levels of w, w; and wy with 0 < w; < wy < 1, such that
W <0 for any w € (wy,w-) and W > 0 otherwise. Then, using h(0,7) =0> h(1,7) for any 7 > 1,
we have that h(w,7) >0 for any w <w;, h(w,7) <0 for any w > wy. Furthermore, h(w,7) is decreasing in w
for any w € (w1,wq). Thus there exists a unique @(7) € (w1,wq) with h(@(7),7) =0 and h(w,7) > 0 for any
w < (1) and h(w,7) <0 for any w > (7). We illustrate the solution for h(w,1) =0 in Figure S.1 for various
values for 7.

We next prove that the interval [F,"'(1—pa), F, ' (pp)] is the dominating interval. For all passing levels
with w > F~ Y(pp), dedicated agents earn zero equilibrium revenue according to Theorem 1 because ap > pp.
Furthermore, all flexible agents serve class A and charge R 4. Therefore, the total revenue of the marketplace
is Il(w,0) =74 fwl fi’/n 5afa,Bdsadsp. Notice that IT(w, 0) is decreasing in w, so that II(w,0) < II(F, *(pp),0)
for any w > F, " (pp).

Now, consider the passing levels with w < F~ 1(1 — pa). The total capacity of the flexible agents is

above both p4 and pp when w < F~ (1 = pa). Therefore, their revenue in the equilibrium cannot exceed
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h(w,1)

0.5F

(a) (b)

Figure S.1  lllustration of the solution for h(w,1) =0 when 7 is a) low and b) high.

min{7aRar, Rpr} because the flexible agents must earn the same equilibrium revenue regardless of the
class they serve by Proposition 3. We show that Ryr > Rpr: Rar = Rpr at w =0 and w = 1. Moreover,

(Rar — Rpr)ar is increasing in w for any w < @(1) and decreasing otherwise because its derivative with

(n+1) (w1 —w™)
2(n—-1) h

cated agents earn at most R. Combining these two, we have that II(w,0) < E[S, ] <TI(F, ' (1—pa),0) where

respect to w is (w,1). Therefore, all flexible agents earn at most Rgr. We also have that dedi-
the last inequality holds because R4r > Rpr and all flexible agents can serve class A when w = Fn_ 1 —pa).

After proving [F; (1 — pa), F, " (pp)] dominates the rest of the passing levels, we focus on the total
revenue in the dominating interval. For any w € [Fn’l(l — pA),Fn’l(pB)}7 the flexible agents sustain an
equilibrium by serving only class A and charging Rar because ar < a . Moreover, the dedicated agents
can charge Rp since ap < pp. Therefore, the total revenue or any w € [F, '(1 —pa), F, " (pp)] is Tl(w,0) =

Sl/n 51/77 . . . .

N ISZA spfapdsadsp+Ta fj fsf safa pdsadsp. Taking the derivative of the revenue function, we have
that IT'(w,0) = %h(w,m). Therefore, the optimal passing level is the solution of h(w,74) =0
if @(74) is inside the dominating interval. Otherwise, one of the end points of the dominating interval is

optimal. Finally, the existence of the Market Equilibrium is directly due to Theorem 1.

S.2.5. Proof of Theorem 4

We first want to note that nlingoﬁ = 7;/(27;) because WILH;OQ =7;/(21;) and nlirgo F,(w) = w. Therefore, we
have that ILII;O w? is as described in the theorem. Furthermore, when only Exam i is offered with threshold
w, flexible 77and dedicated agents cannot earn more than 7;R;r and 7;R;, respectively. Therefore, as n — oo,
the highest possible profit that can be generated in the marketplace cannot exceed II; (w) = Tjw/2+ 7 fwl sds
with i # j € {A, B}, ie., 1LI&H(wA,wB) <II;(w) for any w; =w and w; = 0. As long as w € [1 — p;, pB],
the highest profit can acttrally be sustained as a Market Equilibrium, where all flexible agents serve class i.
Hence, we also have that lim, . II; =max; _,,<.<p, 1L (w)

Using the above observations, we can write the firm’s optimal revenue under Exam ¢ as

I [(1 N +p;} if i < 3%
L m-p)Z+1-p| 2 <1-p:
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Then our claim about the revenue improvement holds true since lim II° =7;/2.
n—00

In order to prove that Exam i is the optimal exam, we first note that IL;(w) >II;(1 —w) for all 0 <w <1
when 7; > 7; because I;(w) — I1;(1 —w) =w(l —w)[r; — T]]/2 > 0. Then, we prove the optimality of Exam ¢

by considering three cases: (i) 1 —p; < 3= < pj, (ii) p; < 52, and (iii) 52 <1—ps.
When 1 — p; < 3£ < p;, Exam ¢ is optlmal because lim I} = maxg<,<i IL;(w) > maxo<,, < 1;(w) >
7’]*}00 - =
lim IT7. When p; < 5=, we have that lim I} = maxo<u<,; 1L (w) > max; _, <w<1 Hj (w) > lim M(wa,ws)
n— o0 n—o00 - - = n—o0

for any w; =0 and 1 — p; <w; < 1. Moreover, when Exam j is offered with threshold w <1 — p;, flexible
agents cannot sustain an equilibrium where all of them serve only class j because doing so would leave them
with zero revenue according to Theorem 1. Thus, flexible agents’ revenues cannot exceed 7; R;. The dedicated
agents’ revenues are also capped by 7; R; because some of them have to serve class i. As a result, we have
that 1im H(wa,wp) < 7;/2=11;(0) for any w; =0 and 0 <w; <1— p;. Combining these two findings, we
have that li)r{.lo II; > lggo IM(wa,wg) for any w; =0 and 0 <w; < 1 when p; < 5L, which prove the optimality
of Exam znfor case (171])

When ZT—; <1— p;, we have that nan;o I} = max;_,, <w<1 1L (w) > maxp<,<,, 1 (w) > nlin;o M(wa,wp) for
any w; =0 and 0 <w; < p;. Moreover, when Exam j is offered with threshold w > p;, dedicated agents earn
zero equilibrium revenue according to Theorem 1, so that hm H(w 4,wp) < T f sds =11;(p;) for any w; =0
and p; <w; < 1. Comblmng these two findings, we have that lim II} > lim H(wA,wB) for any w; =0 and

n—00 n—

0<w; <1 when - 3~ <1 — p;, which prove the optimality of Exam ¢ for case (111)

S.2.6. Proof of Theorem 5

We prove our claim assuming 74 > 7 = 1 for ease of explanation. The proof for 74 < 75 is almost identical. In
our proof, we denote the marginal probability distribution by fi(w) as n — 1, which is equal to 4wlog(1/w).
Also notice that lim Rap = lim Rpp for any (wa,wg).
n—1 n—1
When the firm offers only Exam A, the flexible agents can earn at most 74 R4, and the dedicated agents
can earn at most Rp simply because these are the highest possible prices that they can charge. Therefore,

when the exam threshold is w4, we have that
wA 1
lim II(w4,0) < lim agRp + arRar = / sfi(s)ds+Ta /sfl(s)ds
n—1 n—1 0 wa

where the the upper-bound is a decreasing function of w,. It is also important to note that the flexible
agents can sustain an equilibrium where they earn 74 R4 only when wy > F; '(1 — p4). Therefore, for any
exam threshold wy > F7 ' (1 — py4), we have that 71]1_>rn1 IM(wa,0) < hm I(F; ' (1—pa),0). On the other hand,
for any exam threshold ws < F; (1 — p,4), flexible agents cannot sustaln an equilibrium where all of them
serve only class A because doing so would leave them with zero revenue according to Theorem 1. Thus,
the flexible agents can earn at most Rgpr because some of them have to serve class B. Therefore, we have
that };EH(WA’O) < hm apRp+apRgr = fo sfi(s)ds =4/9. Finally, we have that hm w*==F7(1—pa4)

because

lin TH(F (1—p.),0) = /()ffl(s)dsm A%fl(S)dS— [snds+ a1 /ifl(s)dszzi/a

n—1



Allon et.al.: Skill Management in Large-scale Service Marketplaces 9

where wi = F; '(1 — p4) and the last inequality holds because fol sf1(s)ds =4/9 and 74 > 1. The above
equation also implies that 71,5n1 A% =9/4(t4 —1) fifsfl(s)ds.

When the firm offers only Exam B, flexible agents cannot sustain an equilibrium where all of them serve
only class A because doing so would leave them with zero revenue according to Theorem 1. Thus, the flexible
agents can earn at most Rppr. This also sets a cap for the equilibrium revenues of the dedicated agents
serving class A at TaR4 — (74 —1)Rpr because according to Theorem 1, dedicated and flexible serving the

same class should leave the same net reward to the customers. Then, we have that

lim I1(0,wp) < lim1 aa[TaRa—(Ta—1)Rpr]+ Rerar Z/
n—

n—1 w

;fl (s)ds+Ta /wgfl (s)ds — (ta—1) w;ipl fi1(s)ds
; o B 0 0
/Sfl(s)d8+(7'l471)/ [szFI]fl(s)ds§/sf1(s)ds:4/9,

IN

where the second inequality holds because Rp, = lim1 Rpr > wp. Combining the above inequality with the
n—

fact that lim1 I(F; ' (1—pa),0) >4/9 proves the optimality of offering Exam A.
n—
S.2.7. Proof of Theorem 6
Let 7;(w) = Tjw(f;ax{l_pj/w’o} sds) +; fi sds for i # j € {A, B}. T;(w) is concave in w. Furthermore, denot-

ing the level of w; that maximize 7;(w) over the range [1— p;, 1] by @, we have that @; = [7; p?/(2n)} '/% when

p; <7;/(271), and at ©; = min{1 — p;, 7;/(27;)}, otherwise. We illustrate the structure of 7;(w) in Figure S.2.

w 1 1 1 1
0.2 04 0.6 0.8 1.0

(b)
Figure S.2  lllustration of the function 74 (w) when 74 = 1.2, 7 =1, and pp is a) less than 74 /(275) and b) more

than 74/(27R).

Using these properties of 7;(w), we show that lim, . II(wa,wg) is bounded above as the following propo-

sition establishes:

PROPOSITION 5. lim, o0 I(wa,wp) <max{fa(@a4),75(0r)}.

As we use it in our proof, we want to recall that II;(w) > II;(1 — w) if 7; > 7; as discussed in the
proof of Theorem 4, where I1;(w) = Tjw/2 + T, f; sds for i # j € {A, B}. Moreover, we have that 7;(@;) <

max; _,, <w<1 11;(w), where the equality holds when p; > 7,/(27;).
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1. We prove our claim by considering two cases: i) 74 < 75, and ii) 74 > 7p.
i)7a < 7B : Note that offering Exam B is optimal in the One Test case since 74 < 75. Therefore, we have
that lim,_, o max{II% I3} = lim,_, . II5. Furthermore, we have that lim,_,. ITy = maxi_,,<w<1 TIp(w)

since pa > 1/2>74/(275). Next, we have that 75(@wg) > 7Ta(04) because

ﬁ'A((:)A)SﬁA(TB/(2TA))SﬁB(l—TB/(QTA))S max ﬁB(L&)):ﬁ'B(d}B).

1-pp<w<l
The second inequality above holds because 74 < 75 implies that Il (w) > I 4(1 — w). The third one holds
because we have that 1 — pg <1—75/(274), which is a direct implication of pg > 75/(274).
Combining these observations with Proposition 5, we have that lim,_,. % <1 when pg >
T5/(274), which implies that lim,,_, ., A** =0.
ii)7a > 75 : Similar to the previous case, Exam A is the optimal exam, and thus we have that
lim,,_, oo max{IT%,II% } = lim, o II%. Furthermore, we have that lim,_,, IT% = max;_,,<,<1 ILa(w) since

pB >78/(274). Next, we show that T4 (wa) > 7p(@p). First, when 1 — p4 <75/(274), we have that

#(@n) < Ta(ra/(275)) < Ta(L = 7a/(2r8)) <Ta(rp/(27a)) < | max _ Ta(w) = Fa(@a).

When 1—pa >75/(274), which also implies that ps < min{1,74/(275)}, we have that

(W) —Ta(@a) < max Fg(wp)—Ta(@Wa)< max 7Tp(Wp)—Ta(Da)

(pAvTAvTB) (pA’TAaTB)
1/2< pa<ap <1 1/2< pa—ap <1
= max pa(l—pa)(1—2pa)75/2<0,
1/2<pa <1

where the second inequality holds because Tg(wp) — Ta(wa) is decreasing in 74, which implies that the
maximum must be achieved when &g = pa, and the last one holds because 1/2<p, <1.

Finally, we want to note that lim,_, o II%} = max;_,, <w<1 Tla(w) =7a(D4).

Combining these observations with Proposition 5, we have that lim,_,.. A** =0 as in the case of 74 < 75.
2. We prove our claim by considering two cases: i) 74 < 7g, and ii) 74 > 75.

i) 7a <7 : As in part 1, Exam B is the optimal exam, and thus we have that lim,,_, . max{II%,II};} =
lim,, oo IT%. Furthermore, we have that lim, . Iy = max;_,,<w<i lg(w) since pa > 1/2 > 74/(27p).
We also want to note that if 75(@p) > Ta(@w4), we would have that lim, ., A** =0 because Tg(@p) =
Maxq_p,<w<1 TIp(w) due to the fact that py > 74/(275). Thus, we must have that 7z(@p) < Ta(@4) in
order to have any benefits from the second exam. Moreover, we would have that lim,_, . A** =0if 1 —pp <
Ta/(27g) because 1 — pp < 74/(275) implies that lim,_, I = maxg<,<1 Tp(w) > MaXo<w<1 Ta(w) >
Tal@a).

Using these observations, we have that

Ta(Q& Tal 2—332 2
lim A** <  max M—lg max M—l: max pa( P +2p5) <0.021.
e (o 7a,75) 1B (L= pB) (o, 75)1B(1 = pB) 0<pp<i/z 2+ 2(1—pp)ps
0<pp<wa<l 0<pp<wa

Fa(@a)>Tp(1—pp) pp<1/2, TA=Ts5
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The second inequality above holds because % is decreasing in 7, which implies that the maximum
must be achieved when 75 = min{pp74/2,74}. We also show that we should have that pg <1/2 in order to
have 74(wa) >1I5(1 — pp), and thus we should have that 75 = 74.

ii) 7o > 75 : As in part 1, Exam A is the optimal exam, and thus we have that lim,_, ., max{II* I} =
lim, o IT% . Furthermore, we have that lim,_,. II5 =M 4(pp) since pp < 75/(274). We also want to note

that 74 (wa) > Tp(0p) because

Ta(Oa4) > I > 1I =7g5(0g).
WA(WA)*OSIE?;B A(W)*l_giﬁgl B(w)=7p(0n)

The first inequality above holds since I, (w) is increasing in w when pp < 75/(274). The second one holds
because 74 > 75 implies that I, (w) > T 5(1 —w).
Using these observations and the fact that pg < 75/(274) < 1/2, we have that

Ta(d Ta(d 2—392 2
lim A <max A4 g o TaGa) P P £208) _ (91
170y ra, ) HalpB) (o5, 75)a(pB) 0<pp<i/2 242(1-pp)ps
0<pp<wa<l 0<pp<wa
o <1/2 pe<1/2, Ta=1Tp
The second inequality above holds because %‘:‘ ((“Z]‘;; is decreasing in 74, which implies that the maximum

must be achieved when 74 = 75.

3. We prove our claim assuming 74 > 75 = 1 for ease of explanation. The proof for 74 < 75 is almost
identical. In our proof, we denote the marginal probability distribution by fi(w) as n — 1. Also notice that
lim Rar = lim Rgr for any (wa,wp).
n—1 n—1

As the first step of our proof, we show that lim1 M(wa,wp) <4/9 for any (wa,wp) with wp > wa. When

n—
wp > wy, the flexible agents can earn at most Rpp since 74 > 7 and R4 and R converges to each other
as n — 1. Furthermore, we have dedicated agents serving class A and their equilibrium revenue cannot exceed
TaRA — (T4 — 1)Rpr. Therefore, we have that lim1 M(wa,wp) < lim1 aa[TaRa—(Ta—1)Rpr] + Rprar =
n— n—

fjA sfi(s)ds+(ta—1) [ [s—Rpr|fi(s)ds < fjA sfi(s)ds <4/9, where the second inequality holds because
Rpr > wp.

For any (wa,wp) with ws >wp and wa > F7 (1 —p,), the flexible agents can earn at most 74 R4x, and

the dedicated agents can earn at most Rg. Therefore, we have that

IA

wa
limaBRB—i—aFRAF:/ sfl(s)ds—i—TA/
n—1 wg w
= lim II(F; " (1—p4),0),

n—1

lim (w4, wp)
n—1

1 F7 ' (1—pa) 1
sfi(s)ds §/ sfl(s)ds—i—TA/sfl(s)ds

Fr M (1—-pa)

where the second inequality holds because the left-hand-side decreases in wp and w4. On the other hand,
when wy < F; 1_1(1 — pa), the flexible agents can earn at most Rpr because some of them have to serve class

B. Therefore, we have that lim1 M(wa,wg) < liml apRp+arRpr = fjﬁfl(s)ds <4/9.
n— n—

Combining the above observations, we have that lim1 IM(wa,wp) < max{4/9, lim1 I(F; ' (1—pa),0)} for
n— n—
any (wa,wp). As we discuss in the proof of Theorem 5, limll_[(Fl_l(lpr),O) >4/9, and the firm can
n—

achieve lim1 (F;'(1—p4),0) using only one test. Hence, the second exam does not bring any benefits, i.e.,
n—
lim A** =0.

n—1
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S.2.8. Proof of Proposition 5

We will follow a case-by-case analysis based on the regions described in Figure S.3 to prove that

lim M(wa,wp) <max{fa(@a),T5(@s)},
n—r 00

where 7;(w) = 7'jcu(fnl1 sds) + 7, [ sds for i # j € {A,B}. Furthermore, we let & =

ax{1—p;/w,0}

argmaxi_,, <w<17;(w). We focus on the case of 74 > 75 because the proof is almost identical for 74 <7g.
For notational convenience, we use the upper-script ~ to denote the limit of the revenue function, expected

reward functions, and fraction of agents as 7 — co. We also note that the customers expect the same reward

from flexible and dedicated agents at the the limit. Therefore, we denote the class i € {4, B} customers’

expected reward at the limit by R;.

wan

1
® For any (wa,wp)
on the curve:
pa ® wa=1-pajwp
2
1-pp
For any (w4,wp)
on the curve:
wp=1-— PB/ w4
7.4/713 -1 @ ;
i

1—pa PB 1 wa

Figure S.3  Different regions that a given passing levels (wa,wp) falls as n — co when 74 > 75.

Region-1: For any (wa,wp) in this region, we have that &4 > pa. Therefore, the equilibrium revenue of
dedicated agents serving class A should be zero according to Theorem 1. Furthermore, agents serving class
B cannot earn more than 75 Rz Then, we have that l:[(wA,wB) < TBRB[&B +ar|=7pm ij sds <7g(wg) <
max, , <w<1 7p(w) < #(0p).

Region-2: For any (w4,wp) in this region, we have that TaRA <TpRp since R; = (14 w;)/2 and wy +
Ta/75 —1 <wgp. Therefore, the equilibrium revenue of the flexible agents cannot exceed TBRB. Furthermore,
the equilibrium revenue of dedicated agents serving class i € {4, B} cannot exceed R;. Thus, for any (w4, ws)
in this region, we have that Il(wa,wps) < T Rpldps + ap] + TaARAGA =Tp fwlB sds+ Tawp fiA sds < 7p(wg),
where the last inequality holds because left-hand-side is decreasing in w,4. This implies that ﬁ(w A,wp) <
maxi_,,<w<1T5(wp) <7(Wp) in Region 2.

The line with wg =wa +7a /78 — 1: For any (wa,wp) in this line, we have that TaR 4 =7pRg. Therefore,
any agent (flexible or dedicated) serving class i € { A, B} cannot earn more than 7; R;. Thus, for any (wa,wg)
in this line, we have that (wa,wp) < TeRplap + dp] + TaRAGA = T5 fiB sds + Tawg fjA sds < 7p(wg).
Similarly, we have that Il(wa,wp) < 7aRald@a + dr| +TpReap =Ta fjA sds + Twa fiB sds < Ta(wa). In

other words, we have that I(wa,wp) <min{7a(wa),7s(ws)}.
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We also note that we should have either 1 — ps <75/(274) or 1 — pg < 74/(275) because otherwise we
would have that 2—pa — pp > 7a/(278) +75/(274) > 1, which contradictions with the fact that pa +pp > 1.

If 1 —pa <7p/(274), we have that T4(®) = maxo<w<1Ta(w) because T4(w) is increasing in w for any
w < 1— pa. Combining this with the above upper-bound on I(w4,wg), we have that I(wa,wp) < 7a(@).
Similarly, if 1 — pg < 74/(275), we have that Il(wa,wp) < 7p(@s).

Region-3: For any (wa,wp) in this region, we have that &g + &r > pp and T Rg > 74R4. Therefore,
the flexible agents have to serve both classes, which means that the equilibrium revenue of the flexible
agents cannot exceed 74 R 4. This implies that the revenue of dedicated agents serving class B cannot exceed
TaR 4 because according to Theorem 1, dedicated and flexible serving the same class should leave the same
net reward to the customers. Il(wa,wp) < TaRalaa + ap + ar| = TAl?jig:’B :A sds < I(wa,wp,) with
wp, =wa +T7a/7p — 1, where the last inequality holds because the left-hand-side is decreasing in wp. Then,
our claim holds since we already show that II(ws,wp, ) <max {7 a(©0a),75(@p)} above.

Regions 4, 5, and 6: The proofs for regions 4, 5, and 6 are almost identical to the proofs for regions 3,

2, and 1, respectively, and thus omitted.

S.2.9. Proof of Corollary 1

As we have that lim,_,; A% =lim, ,; A} =lim, ,; A** =0, for any C > 0 there exists a 1 such that both

A* < O/II° and A** < C/max{Il};,II5} holds true for any n < n. This implies that II° > IIy — C for all

i € {A, B} and TI° > max{IT} , I3 } — C' > II** — 2C. Hence, offering zero test is optimal for any 7 <.
Regarding the second claim, as long as C is between the bounds stated in the corollary, there exists a 7

such that both A** < C/II** < C/max{II*,II%} and A* > C/II° hold true for any 7 > 7. This implies that

max{IT%,II5} > II** — C and max{Il%,II5} — C > II° for any 7 > 7. Hence, offering only one test is optimal

for any n > 7.



